Computability Models: Algebraic, Topological and Geometric Algorithms
نویسندگان
چکیده
The discreteness problem for finitely generated subgroups of P S L ( 2 , R stretchy="false">) PSL(2,\mathbb {R}) and C mathvariant="double-struck">C {C}) is a long-standing open problem. In this paper we consider whether or not decidable by an algorithm. Our main result that the answer depends upon what model computation chosen. Since our discussion involves disparate topics computability theory group theory, include substantial background material.
منابع مشابه
Geometric algorithms for algebraic curves and surfaces
This work presents novel geometric algorithms dealing with algebraic curves and surfaces of arbitrary degree. These algorithms are exact and complete – they return the mathematically true result for all input instances. Efficiency is achieved by cutting back expensive symbolic computation and favoring combinatorial and adaptive numerical methods instead, without spoiling exactness in the overal...
متن کاملBouquets of geometric lattices: some algebraic and topological aspects
Matroid theory is in the center of Combinatorics, Finite Geometry, Lattice theory and Combinatorial Optimization. During the last decades, extensive search was done in order to find a good degree of generality which still preserves the validity of deep results known for matroids. One of such generalizations is the concept of bouquet of matroids introduced in 1983 by Deza, Frank1 and Laurent and...
متن کاملON ALGEBRAIC AND COALGEBRAIC CATEGORIES OF VARIETY-BASED TOPOLOGICAL SYSTEMS
Motivated by the recent study on categorical properties of latticevalued topology, the paper considers a generalization of the notion of topological system introduced by S. Vickers, providing an algebraic and a coalgebraic category of the new structures. As a result, the nature of the category TopSys of S. Vickers gets clari ed, and a metatheorem is stated, claiming that (latticevalu...
متن کاملA topological view on algebraic computation models
We investigate the topological aspects of some algebraic computation models, in particular the BSS-model. Our results can be seen as bounds on how different BSS-computability and computability in the sense of computable analysis can be. The framework for this is Weihrauch reducibility. As a consequence of our characterizations, we establish that the solvability complexity index is (mostly) inde...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Contemporary mathematics
سال: 2023
ISSN: ['2705-1056', '2705-1064']
DOI: https://doi.org/10.1090/conm/783/15733